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ABSTRACT

The deformation of a solid induced by swelling is equivalent to that caused

by a temperature change. A generalized Duhamel-Neuimann form of Hooke's

law is omployed to treat a wide variety of environmental problems by the joint

application of solid mechanics and elementary physicalochemistry. This approach

is illustrated for a swollen fiber reinforced material, employing physical chem-

lstry conoepts, mioromeohanios, and laminated antootropio plate theory. The I
specifio results are applicable to the design of dimensionally stable composite

asaterials in variable thermal or swelling environments. A new strain invariant

for laminates under these types of environnmnts Is also introduced.

Distribution of this abstract is unlimited.
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INTRODUCTION

A general phenomenon of nature is the dilatation of a solid induced by a

variety of causes. Some reasons for this phenomenon are: an increase in

temperature; absorption or loss of swelling agents such as water, organic

solvents, etc; and the sudden expansion of absorbed gases in a solid. These

natural processes are responsible for such effects as thermal stresses and

the swelling stresses (References 1 and 2) to be discussed in this report.

Swelling stresses are often involved in environmental cracking of solids

and the internal fracture of a solid after it is subjected to laser radiation

focused on internal planes of the material. In the latter illustration, stresses

are induced by the combined action of locaUy large thermal expansions and the

rapid expansion of volatile products from the thermal decomposition of the

solid. In the everyday world these forces are seen in the cracking of soil as

it dries, the expansion of door Jambs and window sashes in humid weather, and

the cracking of paint as it dries. Figure 1 is a photograph of a rubber block

which ,was swollen and subsequently dried out, primarily by nonuniform

evaporation. The resulting stresses fractured the block in a cracking pattern

similar to that observed in dried soil or on a painted surface.

Despite the considerable work devoted to thermal expansion and thermal

stress problems, the current literature does not provide a general basis for

formulating an analysis of such diverse yet related phenomena as outlined

above. The importance to modern engineering technology and the biological

sciences, however, has prompted this attempt at an analysis of the conse-

quences of such phenomena. For the sake of brevity and laboratory conve-

K nience, we shall analyze the phenomenon of swelling as an illustrative example

and show how this problem parallels the related thermal problem.

j
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C

Figure 1. Cracking Pattern Induced in a Solid by Swelling Stresses
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EXPANSIONAL STRAINS

In this section we shall establish the procedures for the computation of
strain when an object is deformed by swelling or internal gas expansion. With
swelling we are concerned with the equilibrium existing between at least two

phases. The simplest case to consider is that in which one phase contains two

components, while the other contains only one. We shall have aparticular inter-

est in the specific case where the mixed phase is solid and the pure phase

liquid.

The absorption of a vapor or liquid by a solid is a natural process, not

uniquely dependent on any specific attraction between the solid in question and

the swelling agent, but rather on the general diffusing tendency of two sets of r
molecules. This diffusing tendency is no different, in principle, from that

existing between two liquids of similar chemical constitution- for example, the

mixing of alcohol and water. These remarks are particularly true for organic
polymeric materials absorbing organic vapors and fluids, which are predomi-

nantly entropy controlled processes. However, for some water-swelling mate-

rials, the driving force in the swelling process is the chemical attraction be-
tween water and solid, which is effective in spite of an adverse entropy reduction.

Detailed discussions on these points are available in standard tests (References

3 - 6) on theory of solutions.

The extent of swelling will be defined by the 'volume fraction v2 of solid

in the mixture of solid and liquid. On absorbing a quantity of vapor or liquid a

unit isotropic cube in the dry state deforms into a cube of edge X. The volume

swelling ratio for an incompressible solid will then be given by 1/v 2 or X
The normal strain corresponding to this volume change is defined as

for small strains, . These definitions are independent of the nature of the

swelling agent or of the question of equilibrium between the specific fluid and
swollen solid. We consider v2 as a parameter which defines the state of strain

in an unstressed swollen infinitesimal volume element. It is sufficient at this



AFML-TR-68-395

point to simply recognize that procedures exist in the physical chemistry of

mixtures and solutions (Reference 3) which allow for the prerlietirnn rf %.I

specific combinations of fluids and solids.

During the performance of our conceptual experiment the isotropic body

was observed to undergo a pure volume dilatation in the absence of surface

tractions. If it were only required that we pass from the initial volume to the

final volume under no surface tractions, the same state of hydrostatic strain,

-6, could have been produced by a simple temperature rise. A thermal expan-

sion is therefore the mechanical equivalent of a swelling process.

We are now in a position to consider the form of the constitutive relations

in a more general environmental state. Performing the well known power

series expansion of the strain energy function we have

2W 2W CCo +C' + C"IkI eJj eki +

where the ooefficiento C., Cfj, ito. are functions of the entropy, the tempera-

~ ture, and such composition variables as v,. Since W 0 when eij C0 by defini-

i I tion, the constant CO must vanish. Furthermore, since

II "7'1j 6 €el 2 ij 0 eI) )

Cjj must be equal to 2oj at zero strain. Such stresses occur in a solid that is

completely constrained against deformations caused by environmental factors

such as swelling and change in temperature. In what follows we shall call these

deformations expansional strains eilJ"The simplest assumption to treat these

effects is to allow Cjj to be proportional to the expansional stru ins, i.e.,

#C'j :-2Cijkl "kl (4)

where £kI ak6AT for temperature changes and to employ Equation 1 for cal-

culating expansional strains due to swelling or internal gas expansion. When

we drop higher than second order terms in the strain energy density, we get

W =-C1 jk, +l l " C (5)

4
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Hence, the stress components are given by

'ij ' 'ijkl (eki ki (6)

which is a more general version of the Duhamel-Neumann form of Hooke's Law.

The Inverse of Equation 6 is then

e Sijkl Okl +- ij (7)

where Sijki is the compliance tensor.

Since the expansional strains are the components of a second order teneor,

they must obey the tensor transformation law

't (8)
ii ki lj ) ki

where tij are the direction cosines between xi and xj . For the specific case of

an orthotropic material, where unprimed coordinates refer to the axes of ma-

terial symmetry, the expansional shear strains are zero and Equation 8 reduces

t C +t t +t 1 (9)

I.

An experimental verification of this transformation law will be given In a sub-

sequent section.

For atn isotropic solid, Equation 7 reduces to 1)i

eij 26 o~j --( 99 9K

where Bij is the Kronecker delta, G the shear modulus, K the bulk modulus,

o7. , and c Is the linear expansional strain defined by Equation 1 for swelling

and by aAT for thermal expansion. lI the general case, small expansional

strains from different sources are additive so that

•Thermal Swelling

The corresponding strain energy function Is given by

- _ I - (12)
4W-0- I 12G I8K

5

"A
0i- m • m mm m i m mm m m m



AFML-TR-68-395

Accordinuly. we may renngh1i(Ihta *thi n a , ,,"b t! ha.t . hy.4-1r

cess which yields an expansional strain can be formulated into a boundary value
problem within the framework of formal elasticity theory. In fact, solutions
obtained in thermal elasticity can be extended to general expansional problems
by the substitution of 4lj for aij AT. This statement should also be valid not only
for uniform expansional fields but also for problemswhere expansional gradients
are of concern. Where the properties of a thermal gradient and thermal diffu-

sion are expressed in Fourier's law (Reference 7), the problem of gas, vapor,
or liquid diffusion and concentration gradient will be governed by Fick's law
(References 1 and 8).

A problem in expansional elasticity shall be discussed and tested experi-
mentally in the next section. The problem is to establish as a function of con-
stituent material properties the expansional strains in a thin heterogeneous
sheet submerged in a swelling liquid and then to predict the swelling properties
of an angle-ply laminate constructed of this heterogeneous material.

The problem of an advancing boundary of swollen material within a homo-
geneous isotropic cylindrical body has been treated by Alfrey, Gurnee, and
Lloyd (Reference 1) by use of elasticity theory. Our prime concern in subse-
quent sections, however, will be to study the influence of swelling in hetero-

genous anisotropic systems.

6
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ANALYSiE• uOF A UmIWImECTIONAL COMPOSITE SHEET
4

The prediction of the elastic and thermal properties of unidirectional oom-r

posites as functions of constituent material properties and phase geometry has
received considerable attention in recent years (References 9 and 10). Very
recently Sohapery (Referenoe 11) has derived upper and lower bounds as well

as convenient approximate expressions for thermal expansion coefficients based

on the principles of minimum potential and complenmntary energy. We shall

now demonstrate that Schapery's solutions are equally valid for expasional

strains induced by a swelling agent.

Because our argument is dependent on experimental verifcation we have

chosen, for experimental ease, an elastomeric matrix material reinforced

with a system of parallel nylon textile cords for the demonstration. The me-

chanical characterization and the special experimental techniques requiredfor

orthotropio materials has previously been reported in References 12 and 13.

The constituent materials properties are as given below, where the sub-

script f stands for fiber and m for matrix:

:f X 292,000 psi
Ema 300 psi

0.2 fi

ym 0.4999

The composite moduli below were determined experimentally and are in agree-

ment with the nmiromechanics prediction of Hermans (Reference 14):
Ell a 132,000psi

E2 2 a 1050 psi

, 0.36

Gt a 263 psi

where El 1 and E2 2 are the respective Young's moduli parallel and normal to

the fiber direction, Y12 is Poisson's ratio measuring transverse contraction

under a untaxial stress acting parallel to the fibers, and G1 2 is the shear

7
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modulus with respect to the axes parallel and normal to the fibers. Owing to its

high degree of anisotropy, this material offers a stern test for the hypothesis

presented above.

We shell first offer a graphical demonstration of the transformation prop-

erty of aj, i.e. , Equation 9. This was achieved by immersing unidirectional

sheets possessing different fiber orientations in an efficient swelling agent for

the matrix, namely benzene. Results of a typical experiment are shown in

Figure 2(a) for a 30-degree specimen in the dry and swollen states.

In the performance of the experiment the specimens vere observed to

undergo rather large strals Invalidatlng the assumption of infinitesimal de-

formadons. Accordgy, to obtain a precise comparison of theory and experi-

ame-, one must employ a geometrically nonlinear measure of strain. We shall

utilize the Lagraqlan or Green strain tensor defined (Reference 7) as

to ' +5 u +U U (3
jk uj,k kJ i,) I,k (13)

with

at t
•j"ik t)I Ckl;

The extensional strains were computed as

,ol 2

and
SI r[(L II

gas 2 +I it -1 (14)

where E A/I. The corresponding shear strains were computed as

got -2 (1 + 2Zel) (I 4- tn sinaO,, (15)

where the change of the angle between two originally orthogonal coordinate axes

Is given as 012. It was then assumed that a linear relationship exists between

the stresses (based upon undeformed dimensions) and the Lagranglan strain

oomponents. This assumption is justified only in that it leads to a successful

•.8
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Ib)

Iii

Figure 2. ComT1rlson of Dry and Swollen Anisotropl_ Specimens:

a) 30-degree Unidirectional Material, and
b) Yin Angle-Ply Laminate,.
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correlation between the analytica]&nd experimental results for the specific

materials and problem considered here. The choice of a strain tensor depends

upon the magnitude of the experimental effects and Is incidental to the theme of

this presentation.

In the plane of a thin sheet, Equation 9 reduces to

a 2 - I
Cma11 +n 42

sn a +l M *a (16)

6,1 man (all -- l1)

where the x1 axis Is parallel to the fibers and xj is parallel to the long edge of

the sheet, m a con8 and n - sine. To Illustrate the transformation of Equations

16, the expansional strains aj were measured and oomputed in accordance

with Equations 14 and 15 as a funotion of 8, the data for q I being indicated in
11

Figure 8. 1 oT l curve signified by the term unidirectional represents the

first trmnformation equation of (16) with a1: 0.02 and 2@2 - 0.75. TIm shear

component '12 Is presented in Figure 4 and It In accord with the above cited

transformation rules.

To attempt the prediction of the composite expansional strains based upon

its constituent material parameters, the expansional strains of the fiber and

matrix, Ef and 4. respectively, in benzne were determined by experiments as

.0.84

af :20.01

These values as well as the modull presented earlier were used to compute

the composite expansional strains a1 1 and a2 2 from Sohapery's formulas which

were developed for linear thermal expansion coefficients. For the longitudinal

expansicinal strain we have

Em Cm vm +Efafvf
eli 8 Em vm +Efvf

10
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Figure 3. Comparloon Betiween Thsor and Experiment for the Expanhlonal
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Figure 4. Comparison of Theoretical and Experimentally Observed
Expansional Shear Srains for a Uniirectional Material
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where v stands for volume fraction. For a volume fraction of fibers equal to

0.45 the use of Equation 17 gives

Cn z 0.011

The expansional strain normal to the fiber direction is given as

2:1I+VM ) a M +10+ Vf )efv -, ( fV mV ) (181 V

mf i ft mM

which, In our composite, yields a valu , of 0. 70. Both of these estimates are

well within the limits of our experimental precision. The sevmlling expansion

for this matrix material, aIn. is In turn predictable from the well known
Flory-Huggins equation in the polymer physical chemistry literature (Refer-

enoes 3, 5, and 6). Thus we are able to form a continuous development for the
calculation of a physical property ranging from the physical chemistry of

constituent materials to the mechanical response of a composite material. In

the next section we shall extend the theoretical chain by predicting the expan-

aional properties of a laminate from the knowledge of the properties of the

Individual layers.

1
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Onoe the expanslonal properties of a single layer of fiber reinforced

material have been computed from the oonstituent material properties as

discussed in the previous section, the response of a laminate (a system of

unidirectional layerm of various orientations) can be determined through the

use of classical laminated plate theory (Reference 15). In this theory, each

layer is treated as a homogeneous anisotroplo material in a state of plane

stress. Henme the constitutive equations for an individual layer are of the form

O • "°i (e -1, )Ij4 1,2,6 (19)

where standard contracted notation (Reference 16) Is now being employed,

I.e. , QiJ representing the reduced stiffness matrix for plane stress, ej the

eoqineering strain components, and aj the expansional strains. In Equation 19

the normal components of stress and strain are represented by the subscripts

1 and 2o whIle the shear components are indicated by the subscript 6. The

stress resultants N1 are then given by

h/2
_(a f di (20)

where h Is the plate thickness. For laminates In which no bending effects are

present, the strains ea are constants; hence when Ni - 0, we get

A1  f~ 0~Q1  dz (21)

h/avi. i ~A II:J. Qi dz (22)

I
Equation 21 defines the laminate strains under pure swelling or thermal

environments, and therefore the equdvalent laminate expansional strains e

4 2 9 and a6. In what follows, wie shall restrict our attention to uncoupled lam-

inates consisting of layers of the same material and for which A1 6 : A2 6 : 0,

so that a also vanishes. An example of such a laminate is a plate composed

14
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of a series on angle-ply systems stacked symmetrically with respect to the

central plane. Using the invariant properties of the reduced stiffness transfor-

mation equationa (Reference 15), the expansional strains can be oonviently

expressed as

A42 R, -Alt R 2
A A -A

1I 22 12

R-A R(23)All R2-- Alit R, Z3

AAlAll A 12-

where

RI j h " J+ HI
R3 a J 1  -d 2 H1

Al JI h -tU J2 -IUI~

A 1 1 ' U h +U 2 H + U H

A32  Uh -U H +U 5 H

A It U4 h -U H3 a

S(U +u 4 ) Wl +ZU, We (24)
Ji " UIWA +2W 2 (U, +2US-U 4 )L, L

H, ' W h +aos2
n-I
NH., • hn cos 248n

H3 a I h~ coos48n
n.j

L Land e 1 and 4 are the layer expansional strains parallel and normal to the

th
fibers, respectively, h is the laminate thickness, N the number of layers,

the angle between the x1 axis and the fibers in the n layer, and h. the
£ th

thickness of the n layer. The various U1 are functions of the orthotropic

elastic moduli of the layers and are defined in Reference 15.

Previously reported material properties were used to compute the lami-

nate expansional strains for angle ply composites and are shown as the "angle

15
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ply' curve in Figure 3. These calcuhr Lions may be somewhat surprising in that

i&ay sugges tihat at certain angles, the laminate will contract in the longitudinal

direction when heated or swollen 1'igure 2. The triangular data points were ob-

tained from equilibrium swelling of various angle-ply samples. As indicated in

the figure we have observed a 10% decrease in length for a *15-degree laminate.

Note that the 15.degree uridirectional material gave a corresponding positive

expansion of 15%. Dow and Rosen (Reference 16) are observing this same effect

In thermal expansion problems. The obvious agreement between theory and

experiment lends confidence in the approach outlined here. Calcudations of this

type will have technological significance as they specify the material parameters

and geometric construction necessary to yield structural elements with zero or

minimal expansional coefficients.

I

16
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ISOTROPIC EXPANSIONAL STRAIN IN A LAMINATE

Consider the problem of defining a lamination sequence such that the In-

plane expansional strain field is isotropic, i.e., the expansional normal strain

is the same in every direotion in the plans of the sheet, while the shear strain

vanishes. A necessary and sufficient condition for this situation is that el 2"

In Equation 23 this occurs when the following relation is satisfied

R, A,, 1 -Ali
R3  A(25)Rr Atlg" A12

In general, the isotropic strain induced when Equation 26 Is Invoked is a function

of the details of the lamination sequence. However. if we consider "e case

where All " A2 2 , we find from Equations 24 and 25 that P 0, which implies

thatRl R2=J 1 h. If this is true we can use Equations and 24 to obtain the

following expression for the isotropic strain

J,

which Is an Invariant quantity. The expression in Equation 26 depends solely on

the mechanical and expansional properties of a unidirectional sheet of the lami-

nate material. We can therefore assert the following general principle: For any

uncoupleedlaminate with equal stiffne~ses in two inplane directions (Al - A22)

the expansional strain field is isotropLc In this plane and the normal strain in all

directions is simpRly given by Equation 26. This general statement is based on

F the premise that all layers consist of the same material.

The statement holds despite the fact that the laminate Is not quasi-isotropic

with respect to in-plane stiffness. Examples of laminates which undergo Iso-

tropic expansional strain are 0 - 90.degrq.e bidirectional composites, *45.degree

angle ply, and the combined angle ply+a, -a, (v/2 +a ), (r/2-*) for any value

of a, all of which consist of layers of equal thickness. For a given composite

material, all ol these systems undergo identical expansional strains. The par-

ticular casa of a 20, -20, 70, ll0-degree laminate was investigated experi-

mentally (Figure 5). In this experiment an isotropic expansionral strain of 0. 034

F was observed, the prediction was e I : *2 0. 027.

17
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Figure 5. Comparison of a) Dry and b) Swollen Composite Materials:
20, -20, 70, and-11 Degrae Laminates

18
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Equation 26 may also be expressed in terms of engineering constants as

4 a + P Ell -E~t )W,2I C-, +(I+ 2v,) E2(7)

where all moduli refer to the properties of the unidirectional material and W1 ,

W2 are given in Equations24. According to Equation 27, the isotropic strain

becomes

a" WI +2W 3  L as.Ell . (28)Eat

Thus, for very highly anisotropic composites i.e., high ratio of E1 1lE 2 2 ), the

isotropic strain approaches the expansional strain of a unidireotional ply paral-

lel to the filaments. This same limiting case may be approached by employing
F-,!,ribbon shaped reinforcements (Reference 19) possessing high aspect ratios.

Accordingly, the material fabricator has several means at his disposal. for

icreating a dimensionally stable material for technological applications.

.Under pure thermal or swelling environments, the boundaries of a laminate

are stress-free; however, each layer is subjected to stresses which can become

quite large. In fact, in our swelling experiments, the induced stresses in the

laminates were frequently large enough to cause delamination and fracture of

the material. These internal-ply stresses can be estimated from the equations

of classical laminated plate theory,

a7 ((n) Q)(n) c _•(n) for iJ 1,2,6 (29)

where
n W. + 2 W.Cos 29

W(n) We -w2 coW o 2 (30)

-4WE *in 2n

Angle-ply thermal expansion coefficients for various composite materials

are shown in Figure 6.

19
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CONCLUSIONS

We have shown here that the changes in size and shape induced by the

swelling of a solid produces effects equivalent to those caused by temperature

changes. The generalized Duhamel-Neumann form of Hooke's Law can be em-

ployed to treat a wide variety of environmental problems by the Joint application

of solid mechanics and elementary physloal ohemistry. While TM have limited

ourselves to equilibrium problems, these results may be extended to time

dependent phenomena through the structure of linear visooolasticity (References

17 and 18) and the proper definition (Plferenoe 17) of a now reduced timn para-

meter oc to account for the effects of the swelling agent on the time soale. T1%

reduced time, •, for combined thermal expension and swellin will be deffted

as

GTIT (x.01C[C|. ) (1

as discussed in Reference 17.

21
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